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1 INTRODUCTION

The Advanced Reactor Policy Statement (Reference 1) states that for advanced reactors
the Commission expects, as a minimum, at least the same degree of protection of the
public and the environment that is required for current generation LWR. Thus, the
Commission expects that advanced reactor designs will comply with the Commission’s
safety goal policy statement (Reference 2). Furthermore, the Commission expects that
advanced reactors will provide enhanced margins to safety and/or utilize simplified,
inherent, passive, or other innovative means to accomplish their safety function.
Advanced reactor designers are encouraged as part of their design submittals to propose
specific review criteria or novel regulatory approaches which NRC might apply to their
designs.

The purpose of this document is to present the proposed licensing approach for
evaluating the Pebble Bed Modular Reactor (PBMR). Exelon Generation Company
(Exelon) intends to utilize current regulations and is not seeking any new rule making as
part of its Combine Operating License application. Exelon’s approach incorporates risk-
informed elements and insights. It also fits within and fully meets the existing, applicable
NRC regulations that have been developed on a largely deterministic basis for LWR.

The process is based on methods developed in the mid-80s for the Modular High
Temperature Gas Cooled Reactor (MHTGR) and modified to reflect the advances that
have been made since then in risk-informed regulation.

Exelon’s proposed approach to the acceptance and licensing of the PBMR has a clear link
between NRC’s regulatory missions and the specific regulatory requirements to be
applied to the design. Figure 1-1 displays: 1) the NRC mission, 2) the public safety
objective for nuclear power plants as contained in 10CFR50.57, 10CFR50 Appendix A-
Introduction and the Safety Goals, and 3) the means for meeting those objectives by
limiting radiation exposures during normal operation, preventing and mitigating
accidents, and protecting the plant against sabotage and safeguards threats.

Based on these fundamental objectives, a top-down licensing approach for the PBMR has
been developed. Certain regulatory objectives are not amenable to probabilistic
treatment in the present regulatory environment. These include occupational exposure
minimization, environmental impacts other than radiological, and security and
safeguards. These objectives will be met in the conventional manner as consistent with
existing practice. For the remaining objectives (limiting public exposures during normal
operation, and preventing and mitigating accidents), Exelon has developed a risk-
informed licensing approach as described in this paper.

Exelon is proposing this risk-informed licensing approach for the PBMR in order to
bridge a gap in NRC’s existing regulations governing the design of reactors.
Specifically, most of NRC’s existing design-related regulations explicitly pertain only to
light water reactors (LWRs). While Exelon intends to use those regulations as guidance
to the extent that they relate to the design functions of the PBMR, some of those
regulations are not relevant and others are only partially applicable to the design.



Furthermore, other aspects of the PBMR design are not addressed by NRC’s existing
regulations, and Exelon has identified a need to develop criteria to control the design in
those areas. As result, Exelon believes that a risk-informed licensing approach is
necessary to help identify the extent to which LWR-based regulations should be applied
to the PBMR as guidance and to develop new criteria for the PBMR where existing
regulations are silent. This approach will help the PBMR designer and reviewer navigate
through the existing regulations.

The specific objectives for developing the PBMR licensing approach are as follows.

o Establish agreed upon quantitative top-level regulatory criteria

e Establish an agreed upon risk-informed method for selecting licensing basis events

e Establish a design-specific method to select and determine special treatment of
safety-related systems, structures and components

e Establish a process to determine which regulatory requirements and guidance are
applicable and to what extent they need to be supplemented for the PBMR.

This document provides a discussion of the logic and methods at an introductory level so
that fundamental concepts may be discussed and a path to agreement can develop.
Reaching agreement on the PBMR licensing approach is essential before moving ahead
with design finalization, application preparation and specific design reviews in the
application phase.

It is envisioned that once the specific licensing approach objectives (outlined above) are
reached, design decisions and regulatory reviews regarding the PBMR will be better
focused.

The proposed licensing approach (Figure 1-2) results are contingent upon identifying the
following elements:

= Top Level Regulatory Criteria

Identification of Applicable Regulations and Guidance

Selection of Licensing Bases Events

Development of Regulatory Design Criteria and Selection of Safety-Related
Equipment

The first element is within the NRC Mission and Safety Goal box of Figure 1-2, the
second element is shown on the left side of the figure, and the last two elements are
shown on the right side. As shown, a comparison is performed to determine the
applicability of the existing regulations and guidance leading to the development of a set
of regulatory references that define the content of the application.

This report covers each of the elements: Section 2 discusses the Top Level Regulatory
Criteria, which state what must be satisfied; Section 3 discusses the processing for
identifying applicable regulations and guidance; Section 4 discusses the selection of
Licensing Basis Events (LBE) and describes when the criteria must be met; Section 5
discusses Equipment Classification and Regulatory Design Criteria and discusses how
and the how well the criteria will be met; and Section 6 addresses the marriage of the



PBMR licensing use of design specific information and risk insights from the PBMR
PRA with that of current regulatory practice to develop a focused set of regulatory
references to use in completing the design, preparing the application and guiding the
NRC review of the application.
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2 TOP LEVEL REGULATORY CRITERIA

In support of the development and preapplication licensing of the Modular High
Temperature Gas Cooled Reactor (MHTGR), Reference 3 presented a listing of Top
Level Regulatory Criteria (TLRC) to be utilized as standards for judging nuclear power
plant licensability related to the retention of radionuclides. These criteria directly specify
acceptable numerical limits on radionuclide releases for the protection of public health
and safety and the environment. This section updates the previously developed TLRC in
support of planned efforts directed toward the licensing of the Pebble Bed Modular
Reactor (PBMR).

The purpose of the TLRC is to establish a fundamental and quantitative basis that is both
consistent and unambiguous for judging the current acceptability of potential
radionuclide releases such that protection of the public health and safety and the
environment is adequately maintained. The quantitative regulatory criteria are
established to bound and ensure an acceptable level of health and safety as measured by
the risks of radiological consequences to individuals and the environment. The TLRC are
based upon existing NRC regulations, safety goals, and guidance.

This section covers the bases for selection of the TLRC, identification of risk criteria

(both consequence and frequency), and assessment of the applicability of the TLRC to

the PBMR

2.1 BASES FOR SELECTION

The following are the bases for the selection of the TLRC:

= The TLRC should be a necessary and sufficient set of direct statements of acceptable
public health and safety as measured by the risks of radiological consequences to
individuals and the environment'.

» The TLRC should be independent of reactor type and site.

» The TLRC should use well defined and quantifiable risk metrics

Basis 1 ensures that the criteria are fundamental to the protection of the public health and
safety and the environment.

! The term risk as used here implies the definition of a sufficiently complete set of event sequences or
scenarios, estimates of their frequencies and consequences, and thorough understanding and quantification
of uncertainties in these frequency and consequence estimates. Regulatory criteria may be framed in terms
of limits on the aggregate risk levels, by limiting the frequencies of event sequences grouped by similar
consequences, by limiting the consequences of events in different frequency ranges, or some combination
of these approaches.



Basis 2 requires that the criteria be stated in terms that are generic and applicable to all
reactor types and sites.

Basis 3 ensures that the achievement of the criteria can be measured or calculated and
that the results of these calculations can be used to make unambiguous conclusions that
the criteria have been met.

2.2  RISK CRITERIA

Based upon the top level regulatory criteria selection bases above and a review of current
Federal regulations and other pertinent documents, the following regulatory sources have
been identified as containing top-level criteria:

e Reactor Safety Goal Policy Statement — As documented in Federal Register,
Vol. 51, No. 149, pp. 28044-28049, August 4, 1986 (References 2 and 4).

e 10CFR20, Standards For Protection Against Radiation, Subpart D --
Radiation Dose Limits for Individual Members of the Public. These
criteria limit the dose consequences of relatively high frequency events and
releases that occur as part of normal plant operations.

e 10CFR50, Appendix I, Numerical Guides for Design Objectives and
Limiting Conditions for Operation to Meet the Criterion "As Low as is
Reasonably Achievable" for Radioactive Material in Light-Water-Cooled
Nuclear Power Reactor Effluents. These contain cost benefit criteria for
normal releases.

¢ 40CFR190, Environmental Radiation Protection Standards For Nuclear
Power Operations. These are criteria that limit the radiological exposures to
workers from routine plant operations.

e 10CFR100, Reactor Site Criteria, Subpart B, Evaluation Factors for
Stationary Power Reactor Site Applications on or After January 10, 1997.
These criteria impose limits on the radiological consequences associated with
low frequency design basis accidents and hypothetical scenarios selected to
qualify the location of the site and the site boundary in relation to nearby
population zones.

e 10CFR50.34 (a) (1) Content of Applications; Technical Information:
Radiological Dose Consequences. These dose limits are similar to those in
10CFR100 but expressed in Total Effective Dose Equivalent (TEDE) units.

e EPA-400-R-92-001, October 1991, U.S. EPA, Manual of Protective Action
Guides and Protective Actions for Nuclear Incidents (Reference 5). These
criteria set conditions for initiating offsite emergency protective actions in the



event of a threat of significant radiological exposure that would exceed
10CFR20 and Appendix I limits.

The above consequence limits can be transformed into risk criteria, because the event
sequences against which they are applied have understood frequency ranges. For
example, 1) the limits in Part 20, Appendix I, and 40 CFR 190 all pertain to normal
operations and anticipated operational occurrences; 2) Part 100 and 10 CFR 50.34
pertain to design basis events; and 3) the reactor safety goals and protective action guides
generally pertain to severe accidents.

2.2.1 Reactor Safety Goal Policy Statement

The policy statement on reactor safety goals was initiated because of recommendations of
the President's Commission on the Accident at Three Mile Island. The content of the
policy statement was discussed in many forums before the Commission issued Safety
Goals for the Operation of Nuclear Power Plants Policy Statement in 1986, (Reference

2). The Safety Goal Policy Statement expressed the Commission's policy regarding the
acceptable level of radiological risk from nuclear power plant operation as follows:

Individual members of the public should be provided a level of protection
from the consequences of nuclear power plant operation such that individuals
bear no significant additional risk to life and health.

Societal risks to life and health from nuclear power plant operation should be
comparable to or less than the risks of generating electricity by viable
competing technologies and should not be a significant addition to other
societal risks.

The following quantitative objectives are used in determining achievement of the above
safety goals:

The risk to an average individual in the vicinity of a nuclear power plant of
prompt fatalities that might result from reactor accidents should not exceed
one-tenth of one percent (0.1 percent) of the sum of prompt fatality risks
resulting from other accidents to which members of the U.S. population are
generally exposed.

The risk to the population in the area near a nuclear power plant of cancer
fatalities that might result from nuclear power plant operation should not
exceed one-tenth of one percent (0.1 percent) of the sum of cancer fatality
risks resulting from all other causes.

NUREG-0880 provides quantitative data for the determination of incremental risk. This
report cites data showing that the individual mortality risk of prompt fatality in the United
States is about 5 x 10 per year for all accidental causes of death. Applying the prompt
mortality risk safety goal for increased incremental risk of no more than 0.1% results in
an increase in the individual’s annual risk of accidental death by an increment of no more



than 5 x 107 per year. This is applicable to the average risk for those individuals who
reside at a location within 1 mile of the plant site boundary.

NUREG-0880 also notes that, on average, roughly 19 persons per 10,000 population die
annually in the United States as a result of cancer, although the geographlc and
demographic variation is large. Taking the average rate to be 2 x 107 per year and
applying the delayed mortality risk safety goal of 0.1% would limit the i 1ncrease in an
individual’s annual risk of cancer death to an increment of no more than 2 x 10 per year.
This is applicable to the average risk for those individuals who reside at a location within
10 miles of the plant.

Based upon the above, it can be seen that the prompt mortality risk safety goal is more
restrictive than the delayed mortality risk safety goal. Therefore, the licensing approach
conservatively uses the prompt mortality risk safety goal.

2.2.2 10CFR20

This regulation specifies permissible exposure rates, dose levels and activity
concentration in restricted and unrestricted areas.

2.2.3 10CFRS0 Appendix I

This regulatory requirement identifies numerical guidelines for implementing the
objective of as low as reasonably achievable (ALARA). The stated dose values presented
are based upon light water reactor operating experience and design features in order to be
consistent with the objective of being ALARA. The dose values stated in 10CFR50
Appendix I represent suitable power plant allocations of the overall fuel cycle limits
stated by the Environmental Protection Agency in 40CFR190 and in this sense are
representative of TLRC.

It should be noted that the cost benefit guideline for judging the necessity for additional
radioactive waste system improvements is not included as a top level regulatory criterion
since this guidance is not consistent with the criteria selection basis in Section 2. It is not
a direct statement of acceptable risk to the public health and safety or the environment.

2.2.4 40CFR190

This regulation specifies both numerical dose criteria intended to protect the health and
safety of the public and numerical radionuclide release criteria intended to protect the
environment from the consequences of all normal uranium fuel cycle operations. Both
limits are consistent with all of the selection bases and are included as TLRC.

The numerical criteria of 40CFR190 and 10CFR50 Appendix I are complementary and
the PBMR would be assessed against both. Appendix I provides limits on the dose due to
effluents from an individual reactor, including the allocations from shared facilities. In
contrast, 40CFR190 sets a limit on exposure from all sources both effluent and direct



from the plant fuel cycle. On a site specific basis, one or the other may prove to be more
limiting, depending on the existence of any other contributing plants or uranium fuel
facilities in the vicinity and the expected types and levels of effluents. Accordingly both
Appendix I and 40CFR190 are included as TLRC and the maximum allowable dose to
any member of the public shall be the lower of the limits established by their application.

2.2.5 10CFRS0.34

This regulation provides the guidance for determining site suitability for accident
radioactive releases and is consistent with all the Section 2 identified bases and therefore
qualifies as TLRC. The dose guidance specifies a limit for Total Effective Dose
Equivalent (TEDE) values.

However, the analysis assumptions used in implementing these dose guidelines needs to
be oriented to the characteristics of the specific reactor type and design. In particular the
source term guidance given in TID 14844 (Reference 7) or 10CFR50.67 Accident Source
Term as defined in NUREG 1465 (Reference 8) are applicable for light water reactors
and are not appropriate for the PBMR.

This technical content of applications section of the regulation specifies the dose
consequence criteria following design basis accidents as:

«  An individual located at any point on the boundary of the exclusion area for any 2
hour period following the onset of the postulated fission product release, would not
receive a radiation dose in excess of 25 rem total effective dose equivalent (TEDE).

=  An individual located at any point on the outer boundary of the low population zone,
who is exposed to the radioactive cloud resulting from the postulated fission product
release (during the entire period of its passage) would not receive a radiation dose in
excess of 25 rem TEDE.

2.2.6 EPA-400-R-92-001

This EPA manual (Reference 5) provides updated guidance for emergency planning and
Protective Action Guides (PAGs), replacing those previously given in EPA-520/1-75-
001, for exposure to airborne radioactive materials due to a nuclear incident. The PAGs
for responses during the early and intermediate phases following an incident are now
expressed in terms of the projected sum of the effective dose equivalent from external
radiation and the committed effective dose equivalent incurred from inhalation of
radioactive materials from exposure and intake. Supplementary guides are also specified
in terms of committed dose equivalent to the thyroid and dose equivalent to the skin. This
more complete guidance updates and replaces previous values, expressed in terms of
whole body dose equivalent from external gamma exposure and thyroid dose equivalent
from inhalation of radioactive iodine. However, Reference 5 incorporates directly the
PAGs for contaminated foodstuffs previously published by the FDA in 1982 (Reference



10). As before the rationale for the selection of these dose guides is not reactor design
specific.

The NRC implementation requirements in 10CFR50 Section 50.47 and Appendix E for
emergency planning generally specify a plume exposure pathway Emergency Planning
Zone (EPZ) of 10 miles in radius and an ingestion pathway EPZ of 50 miles in radius
provide an adequate planning basis. The technical basis for the selection of these EPZ
distances is given in NUREG-0396 (Reference 11) wherein it is found for the majority of
light water reactors (LWRs) that for all but the most improbable events, the PAGs would
not be expected to be exceeded beyond these distances.

As noted earlier, even though the above criteria appear to limit consequences and are not
framed in the context of risk, they are still regarded as risk criteria because there are
implied scenarios and frequency ranges that are used with the consequence criteria.

2.3 FREQUENCY REGIONS

The development of Frequency Regions is performed in the manner described in
Reference 3 and consists of a spectrum of releases covering a frequency range from
normal operation to very low probability off-normal events. The spectrum of potential
accidental radioactive releases from a plant are divided in the following three regions in a
scenario frequency vs. consequence chart.

e Anticipated Operational Occurrences (AOO)
e Design Basis Events (DBE)
e Emergency Planning Basis Events (EPBE)

An examination of the entire frequency range and the identification of one or more of the
TLRC as being applicable for each Region provide assurance that the selected criteria are
adequately established. A summary of the TLRC and their applicable frequency ranges
are provided in Table 2-1.

2.3.1 Anticipated Operational Occurrences Region

Anticipated Operational Occurrences are those conditions of normal operation which are
expected to occur one or more times during the life of the plant. Using a licensing ba31s
design lifetime of 40 years yields a lower boundary for the AOO region of 2.5 x 10 per
plant year. For this Region, IOCFR50, Appendix I is the applicable criteria as it specifies
the numerical guidance to assure that releases of radioactive material to unrestricted areas
during normal reactor operations, including AOOs, are maintained As Low As
Reasonably Achievable (ALARA).

2.3.2 Design Basis Event Region

10



The Design Basis Event Region encompasses releases that are not expected to occur
during the lifetime of one nuclear power plant. The frequency range covers events that
are expected to occur during the lifetime of a populatlon (several hundred) of nuclear
power plants; and therefore a lower limit of 10" per plant year is chosen. This frequency
is consistent with the frequency of DBEs for existing LWRs . Estimates of LWR core
damage accidents, Wthh exceed the design basis, have been in the range of 1x10% to
greater than 1x10*. For this region, 10CFR50.34 (a)(1) provides the quantitative dose
guidance for accidental releases for siting a nuclear power plant to ensure that the
surrounding population is adequately protected.

2.3.3 Emergency Planning Basis Event Region

The Emergency Planning Basis Event Region considers improbable events that are not
expected to occur during the lifetime of several hundred nuclear power plants. This is to
assure that the risk to the public from low probability events is acceptable, and that
adequate emergency planning is developed to protect the public from undesirable
exposure to radiation for improbable events. The frequency cutoff implicit in the acute
fatality risk goal in NUREG-0880 is taken as the lower frequency boundary of the EPBE
Region. NUREG- 0880 notes that the individual mortality risk of prompt fatality in the U.
S. is about 5 x 10™ per year for all accidental causes of death. The prompt mortality risk
design objectlve limits the increase in an individual’s annual risk of accidental death to
0.1% of 5 x 10, or an incremental increase of no more than 5 x 107 per year. If the
frequency of a scenario or set of scenarios is at or below this value, it can be assured that
the individual risk contributions from these scenarios would still be within the safety goal
independent of the magnitude of consequences. Therefore this value is used as the lower
frequency bound for the EPBE Region.
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Table 2-1
TOP LEVEL REGULATORY CRITERIA

Policy Statement of Reactor Safety Goals

Purpose: To specify acceptable incremental risk of prompt and delayed fatality to
an individual and the population due to local siting of a power plant.

Frequency Range: Normal Operation to 5 x 107 per plant year

1. Individual Prompt Mortality Risks:
The risk to an average individual in the vicinity of a nuclear power plant of
prompt fatalities that might result form reactor accidents should not exceed 0.1%
of the sum of prompt fatality risks resulting from other accidents to which
members of the U. S. population are generally exposed.
Based on the quantitative regulatory guidance documents (References 2 and 6),
the incremental risk to the average individual within 1 mile of a nuclear power
plant site boundary shall be no more than 5 x 107 per plant year.

2. Individual Delayed Mortality Risk:
The risk to the population in the area near a nuclear power plant of cancer
fatalities that might result from nuclear power plant operation should not exceed
0.1% of the sum of cancer fatality risks resulting from all other causes.
Based on the quantitative regulatory guidance documents (References 2 and 6),
the incremental risk to the average individual within 10 miles of a nuclear power
plant site boundary shall be no more than 2 x 10°® per plant year.

10CFR20

Purpose: To specify acceptable occupational and public exposures and offsite
releases in effluents.

Frequency Range: Normal Operation to 2.5 x 1072 per plant year
1. Section 20.1201 - Occupational dose limits for adults.
An annual limit, which is the more limiting of:

(i) the total effective dose equivalent being equal to 5 rem (0.05 Sv); or
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(ii) the sum of the deep-dose equivalent and the committed dose equivalent to
any individual organ or tissue other than the lens of the eye being equal to 50
rem (0.5 Sv).

The annual limits to the lens of the eye, to the skin, and to the extremities, which
are: (i) a lens dose equivalent of 15 rem (0.15 Sv), and (ii) a shallow-dose
equivalent of 50 rem (0.50 Sv) to the skin or to any extremity.

Derived air concentration (DAC) and annual limit on intake (ALI) values are
presented in Table 1 of Appendix B to Part 20 and may be used to determine the
individual's dose (see §20.2106) and to demonstrate compliance with the
occupational dose limits.

The dose that an individual may be allowed to receive in the current year shall be
reduced by the amount of occupational dose received while employed by any
other person (see §20.2104(e)).

Section 20.1301 —Dose limits for individual members of the public:
Total effective dose equivalent (TEDE) < 100 mrem per year.
Dose in unrestricted area from external sources < 2 mrem in any one hour.

Section 20.1302 — Compliance with dose limits for individual members of the
public

Demonstrate by measurement or calculation that the TEDE to the individual
likely to receive the highest dose does not exceed the annual dose limit or
demonstrate that:

(i) the annual average concentrations of radioactive material released in gaseous
and liquid effluents at the boundary of the unrestricted area do not exceed the
values specified in Table 2 of Appendix B to Part 20 and

(i) if an individual were continuously present in an unrestricted area, the dose
from external sources would not exceed 2 mrem in an hour and 50 mrem in a
year.

10CFRS50 Appendix I

Purpose: To specify acceptable offsite exposures during normal operation and

anticipated events for an individual reactor.

Frequency Range: Normal operation to 2.5 X 107 per reactor year.

SectionII: ~ Guides on design objectives for LWR:

Paragraph A:
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Estimated annual dose from liquid effluents: < 3 mrem total body, or < 10 mrem
to any organ.

2. Paragraph B:
Estimated annual dose from gaseous effluents: < 5 mrem total body or < 15 mrem
to the skin.
3. Paragraph C:
Estimated annual dose from all radioactive iodine and radioactive material in
particulate form in effluents to the atmosphere: < 15 mrem to any organ.
40CFR190
Purpose: To specify acceptable offsite exposures and releases due to the entire

uranium fuel cycle.

Frequency Range  Normal operation to 2.5 x 1072 per reactor year.

1.

Section 190.10 (a) — Annual dose equivalent to a member of the general public
from uranium fuel cycle operations (as defined in 190.02).

Whole body dose: <25 mrem
Thyroid dose: <75 mrem
Any other organ dose: <25 mrem

Section 190.10 (b) — Total quantity of radioactive materials entering the general
environment from the entire uranium fuel cycle, per gigawatt-year of electrical
energy produced by the fuel cycle:

Kr-85 < 50,000 curies

1-129 < 5 millicuries

Pu and other o emitting and transuranic nuclides with half-lives:> 1 yr
< 0.5 millicuries.

10CFR100/10CFR50.34 (a) (1)

Purpose: To specify acceptable offsite exposures resulting from unanticipated off-

normal events.

Frequency Range: 2.5x 10%to 1 x 10™ per plant year
p
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An individual located at any point on the boundary of the exclusion area for any 2
hour period following the onset of the postulated fission product release, would
not receive a radiation dose in excess of 25 rem TEDE.

An individual located at any point on the outer boundary of the low population
zone, who is exposed to the radioactive cloud resulting from the postulated fission
product release (during the entire period of its passage) would not receive a
radiation dose in excess of 25 rem TEDE.

Dose Protective Action Guides (PAGs) of EPA 400-R-92-001

Purpose: To specify offsite exposures at the plume exposure or ingestion pathway

EPZ for initiating public protection due to airborne and food pathway
radioactive materials resulting from unanticipated off-normal events.

Frequency Range: 2.5x 10 to 5 x 107 per plant year
perp

L.

Protective Action Guides for Early Phase of Nuclear Incident (Exposure to
Airborne Radioactive Materials):

Protective Action PAG Projected Dose
Evacuation (or Sheltering) for general population if dose > 1to 5 rem®
Administration of stable iodine: > 25 rem”.

Dose Limits for Workers Performing Emergency Services (rem°):

All Activities 5
Protecting Valuable Property 10
Lifesaving or protection of large populations 25
(on a voluntary basis to persons fully aware of risks) >25

2 The sum of the effective dose equivalent resulting from exposure to external sources and the
committed effective dose equivalent incurred form all significant pathways during the early phase.
Committed dose equivalents to the thyroid and to the skin may be 5 and 50 times larger,
respectively.

® Committed dose equivalent to the thyroid from radioiodine

¢ Sum of external effective dose equivalent and committed effective dose equivalent to non-
pregnant adults from exposure and intake during an emergency situation. Workers performing
services during emergencies should limit dose to the lens of the eye to 3 times the listed value and
doses to any other organ (including skin and body extremities) to 10 times the listed value. These
limits apply to all doses from an incident, except those received in unrestricted areas as members
of the public during the intermediate phase of the incident.

Protective Action Guides for Exposure to Deposited Radioactivity During the
Intermediate Phase of a Nuclear Incident
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Protective Action PAG Projected Dose’

Relocate the general population >2rem
(beta dose to the skin may be up to 50 times higher).

Apply simple dose reduction techniques <2rem

4 The projected sum of effective dose equivalent from external gamma radiation and committed
effective dose equivalent from inhalation of resuspended materials, from exposure or intake during
the first year. Projected dose refers to the dose that would be received in the absence of shielding
from structures or the application of dose reduction techniques.

Protective Action Guides for Exposure from Materials via the Food Pathway

Protective Action PAG Projected Dose
Preventive: 0.5 rem®
1.5rem!

(Preventive action is to reduce the radioactive contamination of human food or
animal feed)

Emergency: 5rem®

15rem ’
(Emergency action is to isolate food containing radioactivity to prevent its
introduction into commerce and the level at which the responsible officials should
determine whether condemnation or another disposition is appropriate.)

¢ Dose to the whole body, bone marrow or any other organ.
" Dose to the thyroid
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2.4 TOP LEVEL REGULATORY CRITERIA APPLIED TO PBMR

The regulatory criteria developed and presented in Section 2.3 are applicable to all
nuclear power reactor types inclusive of the PBMR. The consequence criteria are based
upon current regulation and regulatory guidance. The frequency criteria represent a
reasonable quantification derived from current regulatory sources. Recognizing that
some interpretation may be appropriate and that more stringent criteria may be imposed
by the plant user and designer, specific applications of the criteria have been adopted for
a PMBR.

2.4.1 Module Versus Plant Or Site

In the evaluation of the PBMR, the consequence criteria given in Table 2-1 (including
10CFR50 Appendix I) are numerically taken to be independent of a reactor plant, i.e., the
criteria apply to a plant regardless of the number of reactors or modules. However, the
criteria are for the licensing application of a new plant, which may or may not be on a site
with existing, previously licensed reactors/plants. The existence of multiple modules
would increase the frequency of single module related scenarios and create the potential
for scenarios involving multiple modules concurrently. By contrast, in the case of LWR
safety goals and other relevant criteria have been applied to each reactor unit
independently. Thus, in the case of the PBMR, the total impact of installing multiple
modules (up to 10) will be evaluated similar to the equivalent impact of adding a single,
large LWR in the same location. In other words, in determining whether a 10-module
PBMR facility satisfies the TLRC, the licensing approach considers the cumulative risk
posed by the ten modules, rather than considering each module separately.

2.4.2 Distance Criteria

The dose guidelines of I0CFR50.34 (a) (1) apply to an individual located at any point on
the boundary of the exclusion area for any 2 hour period following the onset of the
postulated fission product release, and to an individual located at any point on the outer
boundary of the low population zone, who is exposed to the radioactive cloud resulting
from the postulated fission product release, during the entire period of its passage.

The safety goals for prompt and delayed mortality are applied at one and ten miles,
respectively. However, for the PBMR, all offsite dose criteria and safety goals are to be
met for the maximum exposed individual at the boundary of the exclusion area which is
assumed to be 400 meters from the nearest module.

2.4.3 10CFR50 Appendix I

The dose criteria are expressed in terms of the expected annual dose at the site boundary
along the plume centerline. Hence, for an event expected to occur twice per year the total
dose from two events is compared to the Appendix I annual limit. This is used to derive
an equivalent allowable dose for each event. For frequent events occurring more than
once a year, this results in the sloped risk line shown in Figure 2-1. For less frequent
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events within the plant lifetime, no single event may exceed the allowable dose as
indicated by the vertical dose line in the figure. Appendix I is the most limiting
requirement of those identified for normal operation and anticipated operational
occurrences

244 10CFR50.34.(a) (1)

In the design basis region, acknowledgement that relatively more frequently occurring
events should meet more stringent criteria leads to the sloping dose criteria line. At the
lower end (i.e. 10” per plant year), the criteria are 100% of the limit dose. The criteria
linearly decrease to the upper end where 10% of the limit is used. This is consistent with
the NRC’s qualitative criterion, as reflected in the Standard Review Plan guidance, that
the dose limitations from more frequent accidents be a fraction of the dose guidelines.
The dose criteria are expressed in TEDE at the site exclusion area boundary (EAB). The
10CFR50.34.(a) (1) criteria are more limiting than the Reactor Safety Goals.

2.4.5 Prompt Mortality Safety Goal

The incremental mortality cancer risk allowed by the safety goal is 5 X 107 fatalities per
year. The illustration of the prompt mortality risk curve displayed in Figure 2-11is
approximated and presented in terms of whole body dose in rem. The prompt mortality
risk is more limiting than the latent fatality risk. The use of the safety goals to draw the
criteria line in this region is very conservative when applied to the dose at the site
boundary along the plume centerline as a person at this point would be located at the
point of maximum risk over the area within 1-mile of the site boundary in which the
average individual risk must meet the safety goal. When the individual risk at this point
meets the safety goal, the average individual risk within 1-mile of the site boundary
would be much less than 5x107 per year value.

2.4.6 Dose Protective Action Guides

Protective Action Guidelines (PAG) from EPA-400-R-92-001 are shown as a dose limit
as expressed in TEDE at the emergency planning zone (EPZ). The PAG apply to the
design and emergency planning basis regions. Depending on the size of the EPZ, the
PAG can be the most limiting criteria. The PBMR will be designed with the option to
preclude the need for offsite sheltering, that is, the EPZ would be at the EAB (for sites
without existing nuclear power plants with larger EPZ).
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Figure 2-1
APPLICATION OF TOP LEVEL REGULATORY CRITERIA FOR THE PBMR

19



3 IDENTIFICATION OF APPLICABLE REGULATIONS

In order to effectively implement the licensing approach, two steps will be used to create
a focused list of documents as the regulatory set for PBMR. The first step is a rough
screening of documents for applicability, and the second step is to refine the focus of the
applicable regulations using available design and risk-informed insights to develop the
proposed regulatory requirements set. The purpose of this section is to define the first
step. Sections 2, 4, and 5 of this document define a process that leads to the second step.

Given the very limited regulatory experience with gas reactor technology in the US, there
is not an existing body of regulations directly suited to the PBMR design. Consequently,
for a license application to be prepared, a different set of regulations, regulatory guides
and standard review plans will have to be crafted out of the existing regulatory body to
guide both the applicant in preparation of their license applications and NRC in their
review of them. This situation is recognized in the Introduction to Appendix A to 10
CFR 50 and NRC’s Policy on Advanced Reactors. Appendix A states that the general
design criteria (GDC) were developed for LWRs and are intended to provide guidance in
establishing the principal design criteria for other types of reactors. In the policy
statement, the Commission encourages applicants to interact very early with the NRC
Staff and to propose ways to better guide the application development and review of the
advanced design. That is the objective of this regulatory screening process.

A top-down, safety focused method to create a specific regulatory set using a
combination of deterministic and risk-informed techniques to decide specific
requirements for the design has been discussed above. Using this process, it has been
recognized by Exelon and NRC that some of the current design-related regulations are
fully applicable to any design, some are not applicable to gas reactors, and many may be
partially applicable. There may also be some features of the PBMR design that cannot be
addressed by any current regulatory document, thus requiring new guidance documents to
be developed or other agreements reached between Exelon and the NRC during the pre-
application period. The process of addressing deterministic and risk-informed objectives
is represented in Figure 3-1 (Same figure as Figure 1-2).

As stated above implementation of the proposed licensing approach consists of two steps.
The acceptability of the end products will be determined with the NRC in the pre-
application period. The outcome expected is to create early agreements where possible
and a greater confidence that the license applications will provide the proper information
for an efficient and effective regulatory review. Additionally, by determining early on
which regulations apply to the PBMR design and which do not, Exelon and the NRC will
have a much better understanding of how to navigate through the legal and procedural
steps to obtaining exemptions or other suitable relief from existing regulations geared to
light water reactors. The process described below defines how a Exelon preliminary
screening of the current regulations was conducted.
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3.1 Purpose of Regulatory Document Screening

The purpose of a pilot regulatory document screening was to develop a method for
preliminarily determining applicability of current regulatory documents to the PBMR
design. The pilot examined a large sample of regulations that could apply to the licensing
of the PBMR in the US. The pilot project also provided:

e A greater sense of the number of exemptions that could be required in the process
of reviewing the PBMR design;

o A greater sense of what the key questions and logic are for making decisions
regarding applicability of current regulatory guidance documents at the regulation
level and at lower levels;

e A beginning point for applying risk-informed insights to help shape the changes
or interpretations that will be needed to address partially applicable regulations.

o Confidence that a logical, repeatable, reliable and defendable decision process can
be defined for addressing the remaining large set of regulatory guidance
documents in existence today.

3.2 Pilot Process

A Delphi process was utilized, i.e., subject matter experts to screen the sample set and
develop the common logic from the group process. The expert panel consisted of a group
of individuals with diverse backgrounds. The panel consisted of six participants with the
following industry perspectives; owner, regulator, designer and legal. These members
had more than 180 years of total nuclear industry experience. Backgrounds included
experience in LWR and gas reactor design, operations, maintenance, construction,
licensing, reactor regulation and risk assessment.

Each of the individuals on the expert panel was separately provided with an advanced
sample of approximately 160 regulations (largely consisting of the regulations in Part 50
plus selected other regulations). Each individual was directed to review each regulation
and designate the regulation as applicable, partially applicable or not applicable to the
PBMR design. Each panel member was to independently assess and “yote” on which
category a given regulation falls into. The vote was recorded on the individual ballot
sheets provided in the pre-meeting package. Additionally, each panelist made notes on
key considerations or personal questions that shaped their decision-making process. This
package was completed before the meeting without collaboration with other members of
the panel.

The expectation was that the experience of the panel was greater than typical reviewers
and would provide an accurate initial reaction to the question of applicability. With the
diverse backgrounds of the panel, some variability was expected in the results for some
of the regulations and those differences provided needed insights for deriving a consistent
future process. For that reason, it was important to capture the logic for each reviewer’s
“yotes.” For example, if the legal interpretation of the regulation drove the decision,
“legal” was to be noted as the basis (and so forth for partial technical, intent or purpose of
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the regulations, etc.). If there were multiple considerations, they were to be so noted.
Extensive commentary was not required to explain or defend the answer.

To guide the initial effort, for the large list of regulations provided, reviewers were
directed to not spend more than eight hours total on the pre-meeting preparation of
ballots.

The panel captured the answers on each regulation and discussed individual significant
points of departure. At the end of the session, time was devoted to discussing the
common elements of the decision process that emerged from the review and a draft
decision logic prepared. A small sample of additional regulations was reviewed with the
new composite logic to test its utility for others to use. The panel was also polled for
other ideas that could make the screening process more effective. Finally, the panel
discussed PBMR design-specific topics that could potentially be needed in a new set of
application or review guidance documents because they are not addressed at all in the
current NRC regulatory set.

Finally, the panel discussed whether the process appears suitable as a means to screen the
current set regulations and lower tier documents in to a more focused PBMR -oriented
population.

The PBMR project team compiled all the results from each panelist and from the
common discussions. The results were summarized for presentation to the NRC on what
the findings were from a process point of view and what insights were gained on the
potential exemptions, changes, etc. that could be required to support a PBMR application.

The process yielded several products that will help shape future activities. First, the
process provided a preliminary view on the applicability of each of the regulations in
10CFR50 plus a partial set of other rules that could be used to shape the application and
review requirements for the PBMR design. The preliminary results are provided in
Appendix A. For the 163 total regulations and appendices screened, 115 were viewed as
“applicable”, 22 “partially applicable” and 26 “not applicable”. Five of the “not
applicable” topics were also identified as needing a PBMR-specific replacementz. As
these results demonstrate, the expert panel determined that a substantial fraction of the
regulations are applicable in whole or part to the PBMR.

In determining the applicability of the regulations to the PBMR, the expert panel
considered two questions: 1) does the regulation literally apply to gas-cooled reactors;
and 2) if not (e.g., if the regulation on its face applies only to LWRs), is the regulation
useful as guidance for the PMBR. If either of these questions was answered yes, the
regulation was designated as applicable to the PBMR (or partially applicable in cases in
which the regulations has multiple parts, part of which is applicable and part which is

2 Subsequent to discussion with the NRC on August 9, 2001 Appendix B was generated. This appendix
further breaks down the results to differentiate the focus of the regulations, i.e., Technical Design,
Administrative, Operations/Maintenance, or non-reactor, and whether the degree of applicability was
considered guidance.
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not). In those cases in which a regulation was applicable or partially applicable, the
expert panel also determined whether the regulation was applicable as a legal requirement
or as guidance (i.c., a LWR regulation that will be applied as guidance to the PBMR).

Given that the effort was a pilot for future more detailed examinations of the complete
regulatory set for utilization license applicants, the development of a standardized logic
chart was one of the deliverables. The resulting preliminary chart is shown as Figure 3-
2. The final chart will be used to assess each regulation, regulatory guide, standard
review plan or other required regulatory reference to determine how it applies to the
PBMR design.
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3.3 Examples of Pilot Screening

Several examples are provided to explain how the logic chart in Appendix B is used to reach the
classifications shown in Appendix A. Three examples will be shown that are considered straight
forward applications of the process:

e Applies [50.59]

o Partially applies [50.54(0)]

e Does not apply [50.44]

Example 1 - SECTION 50.59 - CHANGES, TESTS AND EXPERIMENTS

The first consideration is whether the regulatory document is a regulation. For this example, the
answer is yes, since Section 50.59 is a regulation. The second consideration is whether the
PBMR design is within the literal scope of the regulation. In this example, the answer is yes
since the regulation says it applies to all licensees with production or utilization licenses. The
next consideration is whether the entire regulation applies to the PBMR in all subparts or some
subparts specifically provide design-dependent requirements. In this example, all subparts apply
to the PBMR, therefore the requirement is considered fully applicable. Finally, the last step is to
consider whether the PBMR approach will include deviations from the applicable document. In
this example the answer is no. Thus there will not be any need for exemption to this regulation.

Example 2 - SECTION 50.54(0) - CONDITIONS OF LICENSES
Testing of primary reactor containments for water-cooled power reactors

The first consideration is whether the regulatory document is a regulation. For this example, the
answer is yes. The second consideration is whether the PBMR design is within the literal scope
of the regulation. In this example, the answer is no since the regulation says it applies to water
cooled reactors. The next step is to determine whether the regulation is useful as guidance for
the PBMR. The answer to that question is yes, since the PBMR will have a containment. The
next consideration is whether the entire regulation applies to the PBMR in all subparts or some
subparts specifically provide design-dependent requirements. In this example, all subparts do
not apply to the PBMR, therefore this regulation is considered to partially apply and the
requirement requires further examination as to whether it provides guidance that should be
applied to the PBMR. In this example, using general knowledge of the PBMR design, although
the PBMR is not a water-cooled reactor, it does have containment functions included in the
design, therefore the stated purpose of the regulation is useful as guidance, i.e., the requirement
to conduct appropriate leakage testing for the containment functions consistent with the
requirements of the design. The next step is to consider whether as guidance the document 18
fully applicable or partially applicable. In this example, the document is partially applicable as
guidance since the reference to Appendix J - PRIMARY REACTOR CONTAINMENT
LEAKAGE TESTING FOR WATER-COOLED POWER REACTORS is not fully applicable.
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Example 3 - SECTION 50.44 - STANDARDS FOR COMBUSTIBLE GAS CONTROL
SYSTEM IN LIGHT-WATER-COOLED POWER REACTORS

The first consideration is whether the regulatory document is a regulation. For this example, the
answer is yes. The second consideration is whether the PBMR design is within the scope of the
regulation. In this example, the answer is no since the regulation says it applies only to LWRs.
The next consideration is whether the regulation is nevertheless useful as guidance. In this
example, the regulation provides no useful guidance since it specifically relates to metal-clad
fuel in water-cooled reactors.

There are other regulations that require greater judgement and design insight to make the
applicability determination. Examples of these regulations are:

e Applies - SECTION 50.75 - REPORTING AND RECORDKEEPING FOR
DECOMMISSIONING PLANNING

e Partially applies - SECTION 50.49 - ENVIRONMENTAL QUALIFICATION OF
ELECTRIC EQUIPMENT IMPORTANT TO SAFETY FOR NUCLEAR POWER PLANTS

e Does not apply - SECTION 50.46 - ACCEPTANCE CRITERIA FOR EMERGENCY CORE
COOLING SYSTEMS FOR LIGHT-WATER NUCLEAR POWER REACTORS

In some cases, there may be some safety objective or purpose of regulations that, while the legal
requirement or guidance may be not literally applicable, nevertheless lead to a conclusion that a
PBMR application should contain certain information for staff review. For example, the staff
review of accident evaluation models is an appropriate consideration for any reactor type.
However, since there is no direct existing guidance for the PMBR design, new guidance may
have to be developed with the staff in order to complete the application. This process should
identify areas where this is appropriate to reduce uncertainty on the content of the application.
The preapplication period should be utilized to define these new application requirements.

3.4 Process Considerations

In order to achieve consistent answers, the panel found it necessary to standardize PBMR design-
specific meanings for some common terms in the regulations. The following understandings
were needed:

Reactor Coolant Pressure Boundary — The regulations and General Design Criteria
(GDC) frequently refer to the Reactor Coolant Pressure Boundary (RCPB). 10CFR50.2
defines RCPB as certain pressure containing components for an LWR. Therefore, the
term RCPB is not literally applicable to the PBMR. However, the role played by the
RCPB in light water reactor safety has some applicability but not complete applicability
to the PBMR. For the PMBR, the safety functions of the system are different. The
primary system serves as one barrier to fission product release; assures core geometry is
retained; protects against chemical attack; and removes decay heat via conduction and
radiation. The primary system does not have to retain its normal helium content for
convective cooling. Therefore when considering regulations referring to the RCPB, the
function was considered to be a Reactor Pressure Boundary (RPB).
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Containment — The PBMR design does include a containment function. However, the
functional requirements are fundamentally different than low leakage containments found
on LWRs. For the PBMR, the containment design was considered to be a high leakage,
vented containment comprised of two concentric boundaries. The inner boundary is the
citadel. It surrounds the reactor pressure boundary and is intended to provide protection
against external events and certain internal events. The second barrier is the outer
module building confinement structure. Both enclosures contain separate ventilation
systems to filter the contained atmosphere.

Loss of coolant accidents — The PBMR does not have loss of coolant accidents similar to
LWRs. Breaches in the RPB resulting in depressurized loss of forced cooling release the
helium from the circuit and stop the convective flow through the reactor. For the larger
breaks, the entire helium inventory can be vented to atmosphere, but decay heat can still
be removed passively by conduction and radiation heat losses to the heat sink or the
surrounding building and structures.

Merchant Plants — The advent of merchant generators in a deregulated utility market
create conditions not contemplated in some existing regulatory requirements. These
requirements are process-related requirements, rather than design requirements.
Exemptions from the requirements for merchant owners may be appropriate to
specifically address these conditions.

Modular Plants — The advent of small, modular reactor designs create conditions not
contemplated in some existing regulatory requirements. These requirements are process-
related requirements or operational requirements (e.g., number of licensed operators),
rather than design requirements. Exemptions from the requirements for modular designs
may be appropriate to specifically address these conditions.

Additionally, it was necessary to have knowledge of the PBMR design and its fundamental
differences from LWR in order to consider the guidance value of many of the LWR based
regulations. Detailed design knowledge was not considered necessary. Similarly, it was
necessary to have a rudimentary understanding of normal and transient event sequences
including potential licensing basis events for the PBMR design. Based on knowledge of LBE, it
could then be concluded what functional capabilities are necessary in the design to satisfy safety
missions. Finally, comparisons were made between the functional capabilities and the current
regulatory set to determine level of applicability of each regulation.

Finally, in order to distinguish how the regulations applied, it was necessary to differentiate
between literal applicability and applicability for guidance or insight. This provided a necessary
step between legal interpretations of applicability and consideration of the underlying purpose of
the regulation. It was thus necessary as example to evaluate the guidance contained in the GDC
rather than simply exclude them based on their reference to LWR designs. This also gave rise to
an additional result with respect to the need for exemptions to regulations. It is not necessary to
request exemptions for deviations from regulations that do not apply on their face to a given
reactor. For example, pressurized water reactors do not have to address requirements unique to
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boiling water reactors nor do they have to be granted an exemption from those requirements
clearly stated as applying to boiling water reactors. This same practice has been carried forward
in this process. As a result, Exelon will not need to request an exemption for deviations that
apply on their face to LWRs or to LWR component such as zircaloy clad fuel.

3.5 Follow-on Steps

It in important to obtain agreement during the pre-application period on the use and utility of the
resulting logic diagram and needed definitions in order to prepare a high quality application for
the PBMR. This will enable a properly focused application that can be efficiently and effectively
reviewed and address the necessary and sufficient requirements to provide reasonable assurance
of public safety and security for the PBMR design.

Once agreement is reached with the NRC on the process and logic to be used, Exelon will screen
the entire set of NRC regulations to determine applicability, partial applicability and
inapplicability. During the expanded screening effort, Exelon will continue to validate the logic
chart. Also, actual PBMR design information will be used as it becomes available as well as risk
insights from PRA work as it becomes available to refine if needed the decisions on specific
partial or not applicable documents. At the completion of the regulation screening, the results
will be reviewed with NRC. The final logic chart will be confirmed for use to examine sub-tier
regulatory documents that stem from the regulations such as regulatory guides and the standard
review plan.

It is the intent of the process that NRC and Exelon will use the pre-application period to assure
that the full set of regulatory documents that must be considered in whole or in part for the
PBMR design are identified in advance of completing the application.

The process described above is an iterative process. For example, the determination of whether a
LWR regulation is useful in whole or part as guidance for the PBMR depends upon the design of
the PBMR. However, the design of the PBMR will be affected by the guidance that is applied
during the design process. Thus, it may be that the both the design and the identification of
applicable regulations will evolve over time, with finality being achieved once the license is
issued. At the pre-application stage, Exelon is only seeking a tentative agreement with the NRC
staff on what regulations are applicable or might be applicable, realizing that the NRC (and
Exelon) cannot make a final determination until both have had the opportunity to review the
design and the design itself is final.

29



4 SELECTION OF LICENSING BASIS EVENTS
4.1 USE OF PROBABILISTIC RISK ASSESSMENT (PRA)

The purpose of this section is to define the objectives, scope, level of detail, treatment of
uncertainties, and conformance with relevant industry standards for the PBMR PRA that will be
needed to support the proposed risk informed licensing approach for U.S. sited PBMR plants.

4.1.1 Rationale for Use of PRA

Probabilistic Risk Assessment provides a logical and structured method to evaluate the overall
safety characteristics of the PBMR plant. This is accomplished by systematically enumerating a
sufficiently complete set of accident scenarios and by assessing the frequencies and
consequences of the scenarios individually and in the aggregate to predict the overall risk profile.
It is the only available safety analysis method that captures the dependencies and interactions
among systems, structures, components (SSC), human operators and the internal and external
plant hazards that may perturb the operation of the plant that could produce an accident. The
quantification of both frequencies and consequences must address uncertainties because itis
understood that the calculation of risk is affected by uncertainties associated with the potential
occurrence of rare events. These quantifications provide an objective means of comparing the
likelihood and consequences of different scenarios and of comparing the assessed level of safety
against the TLRC.

PRA is selected for the following objectives:

e Provide a systematic examination of dependencies and interactions and the role that each
SSC and operator action plays in the development of each accident scenario; this is referred
to in the PRA community as the capability to display the cause and effect relationships
between the plant characteristics and the resulting risk levels.

e Provide quantitative estimates of accident frequencies and consequences under the most
realistic set of assumptions that can be supported by available evidence.

e Address uncertainties through full quantification of the impact of identifiable sources of
uncertainty on the results and by appropriate structured sensitivity studies to understand the
risk significance of key issues.

o Apply conservatism only through the examination of explicit percentiles of uncertainty
distributions and not by inappropriate combinations of non-physical conservative
assumptions.

e Provide a reasonable degree of completeness in treatment of appropriate combinations of
failure modes, including multiple failures necessary to determine risk levels

It is important that all key assumptions that are used to develop success criteria, to develop and

apply probability and consequence models, and to select elements for incorporation into the
models are clearly documented and are scrutable.
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4.1.2 Objectives of PBMR PRA

In order to determine the scope and necessary characteristics of the PRA that will be required for
the development of licensing bases for the PBMR it is important to list the objectives of the
evaluation. The objectives include:

e To confirm that the Top Level Regulatory Criteria, including that the safety goal Quantitative
Health Objectives for individual and societal risks are met at a U.S. site or sites

e To support the identification of licensing basis events

e To provide a primary technical basis for the development of regulatory design criteria for the
plant

e To support the determination of safety classification and special treatment requirements of
systems, structures, and components (SSCs)

e To support the identification of emergency planning specifications including the location of
the site boundary

e To support the development of technical specifications

e To provide insight on the available defense in depth in the design

4.1.3 Elements of the PBMR PRA

In the case of LWR PRA, the scope of a PRA is defined in two dimensions, with one dimension
used to define the scope of the accident sequence end state and the other for the scope of
initiating events and plant initial states to consider. The different treatment of end states is
expressed in terms of three PRA Levels. The Level 1 PRA is used to describe the part of the
PRA needed to characterize the core damage frequency (CDF); Level 2 is used to describe the
aspects of the scenarios involving releases of radioactive material from the containment
including the frequencies of different release states and estimates of the source terms for the
releases; and Level 3 is used to characterize the aspects of the scenarios involving transport of
radioactive material from the site to the ultimate determination of consequences to public safety,
health, and the environment so that the frequency of different consequence magnitudes is
quantified.

LWR accident initiating events are normally placed into two major categories, one for internal
events and the other to capture external events such as seismic events and transportation
accidents. (Internal plant flooding events are normally included as part of the internal events
scope, but internal plant fires are normally included within the external events scope.) Due to the
combination of inherent LWR characteristics and the fact that major changes to thermal
hydraulic configuration occur during shutdown, the expansion of scope to include shutdown and
low power conditions usually requires a completely different set of initiating events and event
sequence models compared with the PRA models for full power initial conditions.

The scope of the PBMR PRA needed to support this risk-informed approach to PBMR licensing
will be as comprehensive and sufficiently complete as would be covered in a full scope, all
modes, Level 3 PRA covering a full set of LWR internal and external events. However, the
inherent features of the PBMR tend to simplify the number of different elements that need to be
assembled to accomplish a comparably scoped PRA in relation to an LWR.
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The first observation in defining the PBMR PRA elements is that the traditional Level 1- 2- 3
model of an LWR PRA that was originally defined in NUREG/CR-2300 and still used today
does not fit the unique characteristics of the PBMR. Since there is no counterpart for the LWR
core damage end-state, the splitting up of event sequences involving releases into Level 1 and
Level 2 segments does not apply to the PBMR. The elements of the PBMR PRA are integrated
around a single, event sequence model framework that starts with initiating events and ends in
PBMR specific end states for which radionuclide source terms and offsite consequences are
calculated. The integral PBMR PRA encompasses the functions of a full scope Level 1-2-3
PRA.

Another distinction in the definition of PBMR PRA elements is in the treatment of initial
operating states such as full power, low power and shutdown modes. In the LWR case, the early
PRA work was focused on the full power-state as intuitively representing the most limiting
potential for producing risk significant sequences. In the late 1980’s to early 1990’s it was
realized that accidents initiated during shutdown were even more risk significant until controls
were applied to better manage safety functions during plant activities at shutdown. Importantly,
PRA for shutdown conditions in LWR were much more complex than for full power as there
were many plant configurations to deal with and many different time frames during an outage
that created a need to develop separate PRA models for each unique configuration. By contrast,
the different configurations of the PBMR do not have so many different applications of the
safety functions and therefore lend themselves to a single integrated PRA that accounts for all
operating and shutdown states. Furthermore, the on-line refueling aspect and specifications for
maintenance on the large rotating machinery (i.e., the turbo units and power turbine generator)
mean that the fraction of time the plant is shutdown is expected to be an order of magnitude less
than current LWR. Hence for each PBMR PRA element, it is necessary to address applicable
sequences in all modes of operation and this can be accomplished without the need for separate
models for each mode of operation.

The modular aspect of the PBMR creates the potential for anywhere from one to as many as 10
reactors located at the same site. The PRA needs to account for the risk of multiple modules,
which is comparable to the LWR PRA case of a multi-unit site. The existence of multiple
modules increases the likelihood of scenarios that impact a single module independently, and
creates the potential for scenarios that may dependently involve two or more modules.

The elements of the PBMR PRA, which comprise a full scope treatment of initiating events and
end states, include:

Initiating Events Analysis
Event Sequence Development
Success Criteria Development
Thermal Hydraulics Analysis
Systems Analysis

Data Analysis

Human Reliability Analysis
Internal Flooding Analysis

PN R
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9. Internal Fire Analysis

10. Seismic Risk Analysis

11. Other External Events Analysis

12. Event Sequence Quantification (includes full uncertainty quantification)
13. Source Term Analysis

14. Consequence Analysis (includes full uncertainty quantification)

15. Risk Integration and Interpretation of Results

16. Peer Review

As emphasized in the current LWR PRA standards, the PBMR PRA must be capable of a
thorough treatment of dependent failures including the comprehensive treatment of common
cause initiating events, functional dependencies, human dependencies, physical dependencies,
and common cause failures impacting redundant and diverse components and systems.

The ASME PRA standard includes both High Level and Supporting Criteria for dependency
treatment that arises in essentially all of the above elements. In general, the applicability of the
PBMR PRA will be consistent with the ASME PRA standard (Reference 14) for PRA
Capability Category III, a full quantification of uncertainties is required that must reflect the
iterative nature of the PRA as the PBMR evolves from conceptual design, completion of
construction, and eventual commissioning. Quantification of uncertainties provides the
capability to determine the mean frequencies and consequences of each accident family to be
compared against the TLRC, to compare specific percentiles of the uncertainty distributions
against the criteria, and to compute the probability that specific criteria are met.

In order to support the evaluation of regulatory design criteria, the PRA will be capable of
evaluating the cause and effect relationships between design characteristics and risk as well as be
able to support a structured evaluation of sensitivities to examine the risk impact of adding and
removing selected design characteristics.

4.1.4 Applicability of LWR PRA Practices and Standards

The increased use of PRA in the risk-informed regulatory process has led to a number of
initiatives to address and improve PRA quality. These initiatives include an industry PRA peer
review program (Reference 13) and efforts to develop PRA standards by the ASME (Reference
14), and ANS (References 15, 16, and 17). The concepts and principles that are being developed
in these initiatives address both fundamental aspects of PRA technology and certain aspects that
are rooted in characteristics of LWR that are not shared by the PBMR. While the fundamental
aspects are applicable, the following aspects of these quality initiatives will be modified to apply
to a PBMR PRA.

e The current quality initiatives are focused on PRA that are used to calculate CDF and LERF.
If one replaces CDF and LERF with the PBMR task of providing estimates of each
characteristic PBMR accident family, which is defined by appropriate combinations of
PBMR specific initiating events and end-states, then the associated high level and supporting
requirements can be viewed as directly applicable to the PBMR.
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As noted in the previous section it is not appropriate to fit a PBMR PRA into the mold of the
Level 1 -2 -3 framework. Instead an integrated PRA that develops sequences from initiating

events all the way to source terms and consequences is developed.

e Asnoted in the previous section, it is not necessary to perform a completely different set of
PRA models for full power vs. low power and shutdown, such that the PBMR lends itself to
an integrated treatment of accident sequences that cover all operating and shutdown modes.

o Unlike the current LWR applications in which it is rarely necessary to extend the PRA to
Level 3, the initial PBMR applications will need to include off-site dose consequences to
demonstrate the safety case and to meet licensing framework objectives.

e In view of the applications envisioned for the PBMR PRA, a full scope treatment of internal
and external events is anticipated.

With these adjustments, it is reasonable to apply the applicable LWR PRA standards and peer
review process to assessing PBMR PRA quality until such time as PBMR specific standards and
peer review processes are developed. A proposal for application of these standards to each
PBMR PRA element is provided in Table 4-1. Note that the ASME standard proposes three
Capability Categories to address PRA requirements for different applications. The applications
envisioned for the PBMR are assumed in this PRA plan to use ASME PRA Capability Category
III. This is a reasonable assumption because of the expectation that the PRA will be integral to
the licensing basis of the reactor. These are the standards assumed for defining the scope, level
of detail, and capability levels needed to support the risk informed approach to licensing the

PBMR.

Table 4-1

COMPARISON OF PBMR PRA TECHNICAL ELEMENTS AND APPLICABLE PRA

STANDARDS

PBMR PRA
Technical
Elements

Applicable PRA Standards

Comments

1. Initiating Events
Analysis

ASME PRA Standard Initiating
Events Analysis

ANS shutdown PRA standard for low
power and shutdown states

PBMR and LWR PRA essentially
equivalent for this element; separate shutdown
PRA not needed for PBMR

2. Accident
Sequence Definition

ASME PRA Standard Accident
Sequence Analysis

ANS shutdown PRA standard for
accident sequence analysis in low power
and shutdown states

Replace LWR focus on CDF and LERF
with focus on major PBMR accident classes;
separate shutdown PRA not needed for PBMR

3. Success Criteria

ASME PRA Standard Success Criteria

Use of PRA to support licensing basis will

Development and Supporting Engineering Analysis make it easier to delineate realistic vs.
conservative success criteria relative to LWR
4. Thermal *  ASME PRA Standard Success Criteria | * Computer codes to support this developed

Hydraulics Analysis

and Supporting Engineering Analysis

in Germany and being installed at PBMR;
Existing LWR codes are not applicable to
PBMR conditions

5. Systems Analysis

ASME PRA Standard Systems
Analysis

PBMR and LWR PRA essentially
equivalent for this element except that PBMR
has fewer systems to analyze
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COMPARISON OF PBMR PRA TECHNICAL ELEMENTS AND APPLICABLE PRA

STANDARDS
PBMR ?RA Applicable PRA Standards Comments
Technical
Elements
6. Human Reliability | * ASME PRA Standard Human ¢ PBMR and LWR PRA essentially
Analysis Reliability Analysis equivalent for this element

7. Data Analysis

ASME PRA Standard Data Analysis

PBMR and LWR PRA essentially
equivalent for this element

8. Internal Flooding

ASME PRA Standard Internal

PBMR and LWR PRA essentially

Analysis Flooding Analysis equivalent for this element

9. Internal Fires *  ANS Standard for Internal Fires *  PBMR and LWR PRA essentially

Analysis Analysis equivalent for this element

10. Seismic Analysis | * ANS PRA Standard External Events * PBMR and LWR PRA essentially
Analysis equivalent for this element

11. Other External *  ANS PRA Standard External Events * PBMR and LWR PRA essentially

Events Analysis Analysis equivalent for this element

12. Accident
Sequence
Quantification

ASME PRA Standard Quantification

LWR separation of accident sequences into
Level 1-2-3 not appropriate for PBMR; scope
of accident sequences includes doses at the site
boundary; risk importance measures to be
developed and analyzed for each major PEMR
accident class

13. Source Term
Analysis

No corresponding standard

This task is similar to the T/H and source
terms analysis in an LWR Level 2 PRA which
is not currently covered in LWR PRA
standards

14. Accident
Consequence
Analysis

No corresponding standard

This task is similar to the consequence
analysis in an LWR PRA which is not
currently covered in LWR PRA standards

15. Risk Integration
and Interpretation

No corresponding standard

This task is needed to integrate the
frequency and consequence information into a
frequency-consequence format and to interpret
the results compared to TLRC

Not applicable

ASME PRA Standard Level 2/LERF
Analysis

The treatment of physical and chemical
processes that impact source terms are
reflected as an integral process into the PBMR
accident event trees and fault trees; there is no
segregation into Level 1-2-3 as in LWR PRA

16. Peer Review

ASME PRA Standard for full power
internal events, ANS external events and
low power and shutdown sections on
peer review; NEI guide for industry PRA

Certification Peer Review process

A peer review can be performed for each
site specific PBMR PRA that reflects the PRA
scope and uses applicable aspects of the NEI
PRA Certification Peer Process.
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4.2 SELECTION METHOD FOR LICENSING BASIS EVENTS

With a PBMR PRA as outlined above, the selection of LBE proceeds by comparing the risk
results with the three frequency-consequence regions defined on the PBMR risk criteria chart of
Figure 2-1. This section describes the selection process for each of the three subsets of LBE,
namely for the Anticipated Operational Occurrences, the Design Basis Events, and the
Emergency Planning Basis Events. The process is utilized as the design detail and technology
development proceed so that the PRA certainty advances and a final set of LBE are selected.

4.2.1 Anticipated Operational Occurrences

Anticipated Operational Occurrences (AOO) are selected from those families of events whose
mean frequency falls within the AOO region, as shown on the risk criteria chart,

and that would exceed the 10CFR50 Appendix I criteria on a mean value basis were it not for
design selections that control radionuclide release. Those that meet this condition, or a bounding
set of these, are designated AOO.

Families of events may have significant uncertainties in the estimate of their frequencies. The
consideration of these uncertainties is necessary to ensure that all events will be assessed against
the appropriate criteria. The mean value of frequency, which involves an integral over the
complete uncertainty spectrum, is the selected parameter for accounting for frequency
uncertainties. An additional factor (2 at the early stage of the design) is placed on the mean
frequency to assure that event families falling just above or below a region are evaluated in the
most stringent manner.

AOO typically have associated with them relatively small consequences. Furthermore, the
uncertainties in the consequences of AQO are relatively small, and are monitored and reduced
during the life of the plant. Therefore, although the PRA assessment provides the entire
consequence distribution, including the mean, and upper and lower bound doses, it is appropriate
that the consequences of AOO meet 10CFR50 Appendix I criteria on a mean-value basis. The
mean-value represents a first order consideration of uncertainty. This consideration of
uncertainty is consistent with LWR precedent for AOO.

An example of the AOO selection process utilizing comparison of a PRA with TLRC is taken
from the MHTGR preapplication licensing as shown in Figure 4-1. Table 4-2 from Reference 9
provides the list of the five families of events designated as AOO in the figure. AOQO-5, a small
primary coolant leak in one of the MHTGR modules, is the only event with an offsite
consequence. Both frequency and consequence uncertainty bands are explicitly shown in the
figure.

While the other four AQO do not involve an offsite release, each involves a source sufficiently

large that could exceed 10CFR50 Appendix I limits if it were not for a design feature, e.g.,
protection of the primary coolant boundary or isolation of the steam generator.
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Figure 4-1

COMPARISON OF MHTGR PRA EVENT FAMILIES WITH THE MHTGR TOP
LEVEL REGULATORY CRITERIA

IDENTIFICATION OF MHTGR ANT}‘S?II’ZLEI-‘%BD OPERATIONAL OCCURRENCES
(REFERENCE 9)

AOO Designation Anticipated Operational Occurrence
AOO-1 Main loop transient with forced core cooling
AOO-2 Loss of main and shutdown cooling loops
AOO-3 Control rod group withdrawal with control rod trip
AOO-4 Small steam generator leak
AOO-5 Small primary coolant leak
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4.2.2 Design Basis Events

Design Basis Events are selected from those families of events whose mean frequency falls
within (or within a factor of) the DBE region as shown on the risk criteria chart and that would
exceed the 10CFR50.34 criteria on a mean value basis were it not for design selections that
control radionuclide release. Those that meet this condition are designated DBE.

Figure 4-1 again provides an example from the MHTGR. Table 4-3 from Reference 9 provides
the list of the eleven families of events designated as DBE in the figure for the MHTGR. These
are lower frequency events that oftentimes involve multiple failures, both dependent and
independent. An external event is included as DBE-5, which is the 0.3g SSE. Five of the eleven
events have mean frequencies outside the DBE region, but were included because of their large
uncertainties.

Three of the DBE have offsite doses and the mean and upper and lower bound doses are shown.
Within the DBE region both the mean values and upper bound (95% confidence) doses are
compared to the criteria. The mean values provide a more consistent comparison of the doses in
this region to those in the other two regions, and the upper bounds are used to be consistent with
the traditional use of conservative assumptions in performance of design basis accident safety
analyses for LWR.

The PBMR would be expected to have many of these same events, albeit with different
frequencies and consequence values. However, since the PBMR does not have a high pressure
source of water in steam generators, water inleakage is expected to have less risk significance.

4.2.3 Emergency Planning Basis Events

Emergency Planning Basis Events are selected from those families of events whose mean
frequency falls within (or within a factor of) the EPBE region as shown on the risk criteria chart.
Those that meet this condition are designated EPBE.

Figure 4-1 again provides an example from the MHTGR. Table 4-4 from Reference 9 provides
the list of the three families of events designated as EPBE in the figure for the MHTGR. These
are lower frequency events that involve multiple failures, both dependent and independent. An
event is included as EPBE-5, which involves all of the MHTGR’s four modules. One of the
events has a mean frequency outside the EPBE region, but was included because of its large
uncertainty.

All EPBE have offsite doses and the mean and upper and lower bound doses are shown. The
EPBE and DBE mean doses are compared to the PAG and the EPBE mean doses together with
those of the DBE and the AOO are summed over their entire frequency distribution and
compared to the safety goal QHO.

Events below the EPBE region are examined to assure that the residual risk is negligible with
respect to the latent mortality safety goal and to provide general assurance that there is no “cliff”
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in which a high consequence event goes unnoticed. The five low frequency events in Figure 4-1
below the EPBE region without an LBE number (e.g., WC-1) are examples for the MHTGR.

The PBMR would be expected to have similar events to EPBE-3 involving more than one

module and still lower frequency events beyond the licensing basis would be examined to assure
low residual risk.
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Table 4-3
IDENTIFICATION OF MHTGR DESIGN BASIS EVENTS

(REFERENCE 9)
DBE Designation Design Basis Event
DBE-1 Loss of HTS and SCS cooling
DBE-2 HTS transient without control rod trip
DBE-3 Control rod withdrawal without HTS cooling
DBE-4 Control rod withdrawal without HTS and SCS cooling
DBE-5 Earthquake with reactor trip and SCS cooling
DBE-6 Moisture inleakage
DBE-7 Moisture inleakage without SCS cooling
DBE-8 Moisture inleakage with moisture monitor failure
DBE-9 Moisture inleakage with steam generator dump failure
DBE-10 Primary coolant leak without HT'S cooling
DBE-11 Primary coolant leak without HTS and SCS cooling
Table 4-4
IDENTIFICATION OF MHTGR EMERGENCY PLANNING BASIS EVENTS
(REFERENCE 9)
EPBE Designation Emergency Planning Basis Events

Moisture inleakage with delayed steam generator

EPBE-1 isolation and without forced cooling

EPBE -2 M01st.ure inleakage with delayed steam generator
isolation

EPBE -3 Primary coolant leak in all four modules with

neither forced cooling nor HPS pumpdown
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5 METHOD FOR SELECTION OF EQUIPMENT SAFETY
CLASSIFICATION AND DEVELOPMENT OF REGULATROY
DESIGN CRITERIA

5.1 REQUIRED SAFETY FUNCTIONS

The selection of the LBE requires that the radionuclide retention functions that keep the events in
the AOO and DBE regions are identified from the PRA. Even if the event does not have a
release, it becomes a basis for regulatory review to show compliance with the associated TLRC.
Identification of the required safety functions is the first step in equipment classification and the
corresponding regulatory design criteria.

The required safety functions to meet the TLRC were identified for the MHTGR as shown in
Figure 5-1. The figure includes functions needed for both public and personnel TLRC. As
shown, the design included functions for radionuclide retention within the fuel particles, graphite
core, primary circuit, reactor building, and site. The functions required to keep the DBE within
10CFR100 are shaded.
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Figure 5-1

RADIONUCLIDE RETENTION FUNCTIONS FOR THE MHTGR
(REFERENCE 18)
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5.2 METHOD FOR EQUIPMENT SAFETY CLASSIFICATION

The method for selecting safety-related equipment to be relied on for meeting the required safety
functions consists of two steps: one to assure that DBE consequences meet 10CFR50.34 doses
and one to assure that the frequencies of high consequence EPBE are kept in the acceptable

range.

Consequence Mitigation The first step is to classify one or more structures, systems, or
components (SSC) that are available and sufficient to perform the required safety functions to
assure that all DBE meet the DBE dose criteria. On a risk chart, the first step keeps events to the
left of the DBE dose criteria line.

High Consequence Prevention The second step is to classify one or more SSC that are
available and sufficient to perform the required safety functions to assure that all EPBE with
doses greater than 10CFR50.34 remain below the design basis region. Note that this step does
not result in any equipment being classified as safety-related if the EPBE would be acceptable if
in the higher DBE region. This step has the effect on a risk chart of preventing high
consequence events from moving up into the DBE region.

Two examples of the first step of the safety classification method are taken from the MHTGR
pre-application submittal (Reference 18). The first example is for the required safety function to
remove core heat. Table 5-1 presents the evaluation of which SSC are available and sufficient to
perform this function during each of the limiting DBE. As shown the first two forced convection
heat removal systems, the Main Loop Cooling for normal operation power generation and the
Shutdown Cooling System for shutdown heat removal during planned and unplanned outages,
are generally not available over the spectrum of DBE. However, the other two SSC choices are
both available. The system designated Reactor Cavity Cooling System (RCCS) is the heat
removal by passive means of conduction, radiation, and convection (when available) from the
core radially to the reactor vessel and then by radiation from the vessel to the passive, air-cooled
RCCS in the reactor cavity. The second, designated Reactor Cavity and Surroundings, is simply
the concrete structures and the earth of the below-grade reactor cavity silo. The RCCS is
selected as the safety-related SSC as it can be most easily designed and shown by continuous
monitoring to perform the function.

The second example for the function of controlling heat generation is shown in Table 5-2. Two
SSC are shown. (It is understood that the fuel and core have a negative temperature coefficient
whose characteristics are an essential element of the design of the control rods and the reserve
shutdown system.) As indicated, there are DBE in which one or the other of the SSC is not
available. In this case, then, both systems are selected as safety-related.

The process illustrated with the MHTGR examples will lead to similar but different safety-
related SSC for the PBMR. The required safety functions will be very similar. However, the
SSCs are different in the two designs, for example, different power conversion cycles and reactor
core designs. The LBE will therefore be different and the capabilities of similar systems may
result in more or less SSC being designated safety-related.
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Table 5-1
MHTGR EXAMPLE OF SELECTION OF SAFETY-RELATED SSC FOR CORE HEAT

REMOVAL FUNCTION
SSC Available & Sufficient to Remove Core Heat During DBE?
SSC DBE : DBE DBE  DBE | DBE Safety-Related?
1 4 5 7 10
Main Loop Cooling No No No No No
Shutdown Cooling System No No Yes No | Yes
Reactor Cavity Cooling System | Yes | Yes i Yéé Yes 1 Yes Yes
Reactor Cavity & Surroundings | Yes | Yes Yes Yes Yes
Table 5-2

MHTGR EXAMPLE OF SELECTION OF SAFETY-RELATED SSC FOR
CONTROLLING HEAT GENERATION FUNCTION

SSC Available & Sufficient to Control Heat Generation During DBE?

SSC DBE | DBE DBE | DBE | DBE | DBE | Safety-Related?
2 3 4 5 6 7
Control Rods No | Yes Yes Yes ;Ye‘s 1 Yes : \YZgas
Reserve Shutdown Equipment | Yes | Yes | Yes . Yes | No No Yes
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5.3 DEVELOPMENT OF REGULATORY DESIGN CRITERIA

Regulatory Design Criteria (RDC) are statements written at a functional level to describe the
requirements for SSC needed during DBE to assure compliance with 10CFR50.34. The RDC are
similar in nature and purpose to the GDC in Appendix A to Part 50, and will address PBMR
safety functions that are not addressed in the GDC. The RDC have a one-to-one correspondence
to the required safety functions.

Examples of RDC from the MHTGR licensing process are provided in Reference 18 (designated
there as 10CFR100 design criteria). The two that correspond to the two examples in the previous
section are:

Remove Core Heat: The intrinsic dimensions and power densities of the reactor core,
internals, and vessel, and the passive cooling pathways from the core to the environment
shall be designed, fabricated, and operated such that the fuel temperatures will not exceed
acceptable values.

Control Heat Generation: The reactor shall be designed, fabricated, and operated such
that the inherent nuclear feedback characteristics ensure that the reactor thermal power
will not exceed acceptable values. Additionally, the reactivity control system(s) shall be
designed, fabricated, and operated such that during insertion of reactivity the reactor
thermal power will not exceed acceptable values.

Regulatory design criteria were also written for lower level functions providing more specificity.
For example, Reference 18 includes design criteria for sub-functions to the function remove core
heat: conduct heat from core to vessel wall, radiate heat from vessel wall, maintain geometry for
conduction and radiation, and transfer heat to ultimate heat sink.

5.4 REQUIREMENTS FOR SAFETY-RELATED EQUIPMENT

The RDC are qualitative, functional statements for the SSC classified as safety-related.
Quantitative requirements are developed by requiring that the safety-related SSC by themselves
be sufficient for each of the DBE to meet the DBE dose criteria. Reevaluating the DBE non-
mechanistically with only the safety-related SSC available leads to the Safety-Related Design
Conditions (SRDC). The SRDC are used to develop the temperatures, stresses, heat loads, etc.
that the SSC must meet for each of the DBE. The design, fabrication, and operational
requirements for the safety-related SSC are directly linked to the DBE on a case-by-case basis.

An example of the process from the MHTGR is considered for the reactor pressure vessel. The
reactor pressure vessel was classified as safety-related based on consideration of the following
required safety functions:

1) radiate core heat from vessel wall,

2) maintain core geometry, and

3) limit air ingress to core.
With regard to the function to maintain core geometry, the reactor vessel must maintain its
strength during off-normal events including conduction cooldown events (loss of forced cooling
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from both the main heat transport and shutdown cooling systems). These include a pressurized
conduction cooldown (DBE 1 and 4 in Table 4-3) and a depressurized conduction cooldown
(DBE 10 and 11in Table 4-3). An ASME Code Case was submitted and approved to allow
elevated temperature operation for the stainless steel 508/533 material (up to 1000 hours over
700F but not to exceed 1000F). Additionally, the other DBE lead to requirements for this
function that include seismic loads for the .3g SSE (DBE 5 in Table 4-1) and for vessel pressure
relief capability for steam generator leaks into the primary system (DBE 6-9 in Table 4-3).

This process will be followed for the PBMR, but, at this level, the requirements even for similar
components to the MHTGR may vary.
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6 CONSISTENCY WITH CURRENT REGULATORY PRACTICE

The purpose of this section is to describe how the PBMR licensing approach is consistent with
current regulatory practice. This includes the degree of consistency with NRC policies on the
licensing of advanced reactors, the use of risk-informed approaches to regulate nuclear reactor
safety, and with regulatory practice for special treatment of safety-related equipment.

The Advanced Reactor Policy Statement (Reference 1) sets forth NRC expectations for design
features that qualify for consideration as an “advanced reactor” and solicits early dialogue on
innovative approaches that may be appropriate for reactors that possess one or more of these
advanced reactor attributes. A summary of how the PBMR aligns with the policy statement on
advanced reactors is provided in Section 6.1.

The principles of risk-informed regulation that are being used for selected applications with
LWR are discussed in Regulatory Guide 1.174 (Reference 20). A discussion of how each of
these principles is addressed in the design and licensing of the PBMR is described in Section 6.2.

Section 6.3 addresses the PBMR licensing approach’s consistency with regulatory practice on
the special treatment of safety-related equipment.

6.1 NRC ADVANCED REACTOR POLICY

A primary goal of the PBMR licensing approach is to be responsive to the Advanced Reactor
Policy, namely to foster early dialogue and agreement on the approach in a manner that enhances
the stability and predictability of the process. The Advanced Reactor Policy statement sets forth
NRC expectations for characteristics in order to be regarded as an advance reactor. The policy
statement acknowledges that the NRC regards an earlier version of a gas cooled reactor concept
as qualifying for the advanced reactor designation. There are additional enhancements and
innovations in the PBMR that provide additional reasons to support the PBMR designation as an
advanced reactor concept.

A summary of the advanced reactor characteristics identified in the Advanced Reactor Policy
Statement and how they are addressed in the preliminary PBMR design is provided in Table 6-1.
There are significant PBMR preliminary design features to address each characteristic identified
in the NRC Advanced Reactor Policy.

In addition to the characteristics identified in Table 6-1, the Advanced Reactor Policy concludes
that advanced reactors should have enhanced margins of safety and meet or exceed the safety of
existing reactors. The PBMR will meet this policy. As evidenced in Section 2 on the Top Level
Regulatory Criteria and in Section 4 in the spectrum of events to be evaluated, the TLRC will
ensure that the PBMR meets existing requirements with margin including the NRC Safety Goals.
Additionally, as discussed in Section 6.2.3, the PBMR will have enhanced safety margins.

46



Table 6-1

COMPARISON OF PBMR PRELIMINARY DESIGN FEATURES AND NRC
DEFINITION OF ADVANCED REACTOR CHARACTERISTICS

NRC’s Definition of Advanced Reactor
Characteristics

Corresponding PBMR Preliminary Design Features

Highly reliable and less complex shutdown and
decay heat removal systems; The use of inherent or
passive means to accomplish this
objective....(negative temperature coefficient,
natural circulation)

e Low excess reactivity and negative temperature
coefficient provide passive shutdown capability

s Two diverse active systems provided to insert
negative reactivity to assure long term sub-criticality

e Redundant, diverse and independent active forced
cooling systems to remove core decay heat

e Conduction/radiation cool-down capability without
forced or natural convection of the primary coolant

e  No requirement for maintaining an inventory of
primary coolant inside the reactor vessel.

Longer time constants and sufficient
instrumentation to allow for more diagnosis and
management prior to reaching safety systems
challenge and/or exposure of vital equipment to
adverse conditions.

e Low power density and large heat capacity of core
fuel and graphite provides long time constants for
power/temperature transients over full range of
accident conditions

e Low stored energy and single phase of primary
coolant prevents rapid thermal and mechanical energy
transfer to primary boundary and to containment
structures; eliminates fuel coolant interactions that
could challenge barrier integrity.

e Capability to monitor circulating primary system
radioactivity to confirm integrity of the fuel is within
design limits

Simplified safety systems which, where possible,
reduce required operator actions, equipment
subjected to severe environmental conditions, and
components needed for maintaining safe shutdown
conditions.

e  Capability to limit consequences of event sequences
independent of any prompt operator actions; and
reliant on passive safety features.

e Safety systems are few, simple, and have few
components needed to operate

Designs that minimize the potential for severe
accidents and their consequences by providing
sufficient inherent safety, reliability, redundancy,
diversity and independence in safety systems

e The inherent capabilities of the fuel particles to retain
their structural integrity over the range of normal and
event sequence conditions with margins limit the
source terms to very small levels; operation of active
systems not required to support this capability

o Long time constants of any releases and absence of
any adverse physical and chemical processes

e  Any sequence with the primary system boundary
intact results in no release of radioactivity

e Design features that limit the potential for air or water
ingress.

Designs that provide reliable equipment in the
balance of plant, (or safety system independence
from balance of plant) to reduce the number of
challenges to safety systems

e The entire plant is very simple with a small number of
components and support systems;
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Table 6-1

COMPARISON OF PBMR PRELIMINARY DESIGN FEATURES AND NRC
DEFINITION OF ADVANCED REACTOR CHARACTERISTICS

NRC’s Definition of Advanced Reactor
Characteristics

Corresponding PBMR Preliminary Design Features

Designs that provide easily maintainable equipment
and components

¢  Fuel elements are continuously monitored via on-line
refueling and monitoring of circulating activity;
broken and spent fuel elements replaced

e Power conversion equipment (turbo-generator, turbo-
units, etc.) can be maintained without compromising
ability to support key safety functions

Designs that reduce the potential radiation
exposures to plant personnel

¢ Performance of the fuel greatly reduces level of
circulating primary coolant activity

¢ Inert helium provides no impurities for activation
products

Designs that incorporate defense-in-depth
philosophy by maintaining multiple barriers against
radiation release and by reducing potential for
consequences of severe accidents

¢  Fuel particles, fuel spheres, primary pressure
boundary, citadel structure, containment envelope
serve as concentric, independent barriers (See more
detailed discussion in Section 6.2.1)

o Design features provide accident prevention and
mitigation (See more detailed discussion in Section
6.2.2)

Design features that can be proven by citation of
existing technology or which can be satisfactorily
established by commitment to suitable technology
development program

¢ Innovation of earlier designs: extensive experience
with gas cooled reactors, HTGRs, and significant
experience with pebble bed reactors to provide
confidence in performance of fuel and major
components.

e New and unique PBMR features important for power
production but not needed to support key safety
functions

e experimental evidence to support confidence in the
integrity of the fuel under normal and adverse
conditions

e Formula for proven fuel manufacturing process and
quality assurance testing that ensure manufacturing
reliability

e  Plan to feedback operating experience from early
PBMR to refine technology
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6.2 IMPLEMENTATION OF RISK-INFORMED REGULATION PRINCIPLES

Regulatory Guide 1.174 provides the foundation for NRC LWR risk-informed activities and
provides guidance for the Option 1 activities. In Reg. Guide 1.174, the NRC outlined five
principles of risk-informed regulation for changes to existing facilities:

1. The proposed change meets the current regulations unless it is explicitly related to a
requested exemption or rule change, i.e., a "specific exemption" under 10 CFR 50.12 ora
"petition for rulemaking” under 10 CFR 2.802.

2. The proposed change is consistent with the defense-in-depth philosophy.

The proposed change maintains sufficient safety margins.

4. When proposed changes result in an increase in core damage frequency or risk, the increases
should be small and consistent with the intent of the Commission's Safety Goal Policy
Statement

5. The impact of the proposed change should be monitored using performance measurement
strategies.

W

While the above principles are expressed to evaluate changes to an existing licensing basis, they
provide a useful way to evaluate the risk-informed aspects of the PBMR licensing approach. The
licensing approach that is proposed for the PBMR addresses each of these risk-informed
principles. Item 1 is being addressed by examining each of the current regulations and
determining their applicability to the PBMR. An analysis of how the PBMR design employs the
defense-in-depth philosophy by use of inherent and active and passive engineered safety features
is discussed in Section 6.2.1. An evaluation of prevention and mitigation in achieving defense-
in-depth is discussed in Section 6.2.2. The incorporation of safety margins into the design
specification is discussed in Sections 6.2.3. As noted in the process for selecting Licensing Basis
Events in Section 4 and their derivation from Top Level Regulatory Criteria in Section 2, the top
down licensing process proposed for the PBMR is rooted in basic requirement that the NRC
Safety Goal Policy will be met. Since RG 1.174 was written for changes to existing LWR, the
fifth principle does not literally apply, however, key plant parameters will be monitored during
operation as discussed in Section 6.2.4.

6.2.1 Defense-in-Depth

The risk-informed defense-in-depth framework described by the Staff in SECY 00-198 (see
Figure 2-1 in Reference 21) is comprised of the goal of protecting public health and safety;
reactor safety cornerstones expressed in terms of initiating events, mitigation systems, barrier
integrity, and emergency planning; and strategies and tactics to assure reactor safety. The
strategies include accident prevention and mitigation, whereas the tactics cover the areas of
design, construction and operation using the principles of safety margins, redundancy, diversity,
independence, general design criteria and special treatment requirements.

Regulatory Guide 1.174 offers several considerations for ensuring that defense-in-depth is

maintained in risk-informed changes proposed to the current LWR licensing basis, including
those to ensure:

49



A balance between accident prevention and mitigation,

No over-reliance on programmatic activities to compensate for weaknesses in plant design,
System redundancy, independence, and diversity are employed,

Potential common cause failures are minimize through the use of passive, and diverse
active systems to support key safety functions,

e Barriers to radionuclide release are independent, and

e The potential for human errors is minimized.

A discussion of how the PBMR will address prevention and mitigation is provided in the next
section that includes an illustration for the MHTGR of the degree of independence for each
radionuclide barrier during several DBE. With regard to the other items, it is expected that the
process for selecting LBEs and developing the associated regulatory design criteria will lead to
design decisions to employ an appropriate level of system redundancy, independence, diversity,
and appropriate defenses against common cause failures and human errors. For example, the
preliminary design of the PBMR includes two diverse shutdown systems and several diverse
decay heat removal systems. Hence applying the above considerations for ensuring defense-in-
depth is consistent with the proposed licensing approach and anticipated PBMR design
requirements.

One physical connotation of defense-in-depth is to provide multiple independent barriers to the
transport of radionuclides to the environment. To apply the defense in depth concepts to the
PBMR it is helpful to outline the key safety functions that protect the barriers to radionuclide
transport. The barriers to radionuclide transport in the PBMR include:

e The fuel including the coated fuel particles and the pebble bed spherical fuel elements

e The primary pressure boundary (PPB) which comprises the reactor vessel and
connecting vessels and piping that contain the helium coolant and interfacing helium
inventory control and purification systems.

¢ The containment and including the citadel, which provides a structural barrier, and the
confinement boundary and HVAC systems, which control and filter any releases from
the PPB.

Using the above preliminary design barriers and the key safety functions that support them, a
representative description of the design features that support the defense-in-depth concept in the
PBMR is presented in Table 6-2. Specifics of this representative table may change as the design
progresses.

The inherent features in this table, as well as the engineered passive and active features are
intended to achieve a high degree of independence among each of the above barriers. Dependent
interactions between these barriers are intentionally minimized in the design selections. In
addition to providing prevention and mitigation, these features strive to strike a balance between
inherent and engineered passive features that exhibit robust safety margins when challenged, and
highly reliable active features that reduce the likelihood of these challenges. A model for
examining these important components of defense-in-depth is presented in the next section.
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Table 6-2 is a composite of the features providing defense-in-depth organized by the required
safety features discussed in Section 4. However, as discussed in Section 5, the safety
classification approach examines the spectrum of DBE to select a set of SSC that is available and
sufficient during each event. Therefore, the physical concept of defense-in-depth varies by event
sequence family. In addition, the process concept of defense-in-depth is employed for the SSC
selected as safety-related. Namely, the design, procurement, fabrication, construction, operation,
monitoring, in-service-inspection and testing are each defined to provide a high level of
assurance that the functional requirements are met for each DBE
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6.2.2 Prevention and Mitigation

The risk-informed defense-in-depth framework in SECY 00-198 describes the roles of accident
prevention and mitigation to ensure defense-in-depth. To address the degree of prevention and
mitigation for the PBMR, it is necessary to generalize the concept of prevention and mitigation
so its application to the PBMR is not obscured by its fundamental differences with LWR.

Consistent with the notions of defense-in-depth described in various NRC documents (e.g.,
NUREG 1150 (Reference 22)) is the insight that prevention and mitigation be discussed in the
context of an event sequence or family of event sequences with similar characteristics. An event
sequence is examined in terms of the following generic elements

1. An initiating event that constitutes a challenge to the plant systems responsible for control of
transients and protection of the plant SSCs including the radionuclide transport barriers.

2. The response (successes and failures) of plant active systems that support key safety
functions responsible for protection of barriers, retention of radioactive material, and
protection of the public health and safety, as defined by the event sequence.

3. The response of passive design features responsible for supporting key safety functions.

4. The response of each barrier to radionuclide transport to the environment; these barriers
typically include the fuel elements, the primary pressure boundary (PPB), and the
containment or containment structure.

5. The implementation of emergency plan protective actions to mitigate the radiological
consequences of a given release from the plant.

The development of a generic model for discussing event sequence prevention and mitigation

makes use of two key PRA insights:

1. A given design feature exhibits varying degrees of importance on different event sequences.
Hence it is necessary to examine a spectrum of sequences to understand the safety
significance of a particular feature.

2. A design feature may be postulated to fail along one sequence, but operate successfully on
another so it may prevent an accident in some cases and mitigate an accident in others.

Hence the extent to which risk is managed by prevention or mitigation varies across the event
sequence spectrum.

An example of the analysis of prevention and mitigation aspects for a given event sequence in
the MHTGR is illustrated in Table 6-3 for DBE 10, a moderate primary coolant leak with forced
cooling (References 9 and 23). This same type of sequence is expected to be a candidate for
selection as an LBE for the PBMR. The description of the sequence in this table has been
constructed to identify the key design features responsible for each of the prevention and
mitigation elements of the generalized model.

To provide a quantitative assessment of the preventive and mitigative aspects of design features
along this sequence, components of the event sequence frequency and the role of each barrier in
the retention of one important radionuclide, Iodine-131, are identified. The values of the
initiating event frequencies, failure probabilities, and release fractions are each proportional to
the risk of release of I-131.
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DBE 10 is initiated by a moderate size failure in the primary pressure boundary up to size of
about 13 in?, which results in a depressurization of the primary system into the containment. For
this sequence, there is successful insertion of the control rods, and continued forced circulation
cooling of the core using the Heat Transport System (HTS) circulators and heat removal paths.
The releases into the containment include a large fraction of the initial circulating activity and a
small fraction of the initial plateout activity from shear forces during the rapid depressurization.
These source terms are significantly influenced by the reliability of the fuel particles as
manufactured and the performance of the fuel during normal operation.

The design feature identified as contributing to prevention for this sequence include:

= the reliability of the PPB pressure boundary itself which helps to reduce the initiating event
frequency to its indicated value.

The factors that contribute to mitigation include:

= the successful response of the reactor trip system and the forced cooling systems that prevent
any increases in reactor temperatures relative to normal operating temperatures during the
event sequence transient,

* the performance of the fuel during normal operation which limits the circulating activity and
plateout activity available for release and its continued performance during the sequence in
which the forced cooling system prevent any temperature increases,

= the performance of the PPB as a radionuclide barrier which retains most of the plateout
activity and some of the circulating activity, and

» the performance of the containment which retains part of the source term released from the
PPB during the event sequence.

Additional perspective can be gained from examining the sequence in which additional systems
fail, as exemplified by DBE 11, a small primary coolant leak without forced cooling. DBE 11 is
initiated by a small leak in the primary pressure boundary (PPB) up to 1in? in size and involves
failure of both MHTGR systems normally available to provide forced circulation of helium,
successful insertion of the control rods, and successful conduction cooldown of the core using
the passive Reactor Cavity Cooling System (RCCS). The RCCS is successful in cooling the core
in a very slowly evolving temperature transient in which the spatial temperature profile shifts as
core heat is removed by conduction and radiation from the reactor vessel to the passive RCCS
located in the containment envelope. As parts of the core temporarily increase in temperature
before cooling down there is a contribution to the source term that is released from part of the
inventory associated with initially failed fuel particles and from external fuel particle
contamination, in addition to the circulating activity. Lift-off of plateout is negligible, as the
depressurization rates are slow for this size of PPB leak.
As shown in Table 6-4 factors identified as contributing to prevention for this sequence include:
= the reliability of the PPB boundary and
* the reliability of the forced cooling systems that are postulated to fail along this sequence.
The key factors that are identified as mitigation features along this sequence include:
» the successful operation of the reactor trip system,
= successful pump-down of the helium inventory which reduces the driving head for transport
of radionuclides, and
= successful operation of the passive RCCS to effect cool-down of the core.
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Upon comparing the roles of common design features for these two event sequences, it is seen
that the forced cooling systems provide a mitigation role in DBE 10 and a prevention role in
DBE 11. As with DBE-10, the radionuclide barriers of the fuel, PPB, and containment each

provide important mitigation roles.

The above discussion of prevention and mitigation considered the integrated response of the
entire plant as assessed in a PRA on the MHTGR. It is expected that application of this approach
to the PBMR will exhibit some similarities and differences with respect to these two examples
due to similarities and differences between the PBMR and the MHTGR.
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6.2.3 Safety Margins

The need to maintain adequate safety margins is one of the principles of risk-informed
regulations set forth in Regulatory Guide 1.174. In general, this term connotes the relative
conservatism employed in the design, the selection of design requirements, and the
design evaluation process to achieve a level of confidence that the TLRC are met in light
of uncertainties in performance of SSCs and in plant behavior during accident conditions.
There are several applications of safety margins in the PBMR design and several
opportunities to evaluate adequacy of these margins in the proposed licensing approach.

The PBMR incorporates safety margins in the design of the core and fuel, selection of
core power and geometry, system design and selection of operating conditions to ensure
that over a spectrum of operating conditions including low frequency event sequence
conditions, a set of stringent regulatory design requirements are met. One of these
thresholds is that the maximum fuel temperatures will not approach unacceptable
(nominally1600°C) over the full range of LBEs. The selection of this temperature limit is
well below the levels that would challenge the fuel barrier integrity. The concept of
safety margins is applied in the selection of this limit and in decisions to apply it to the
full spectrum of LBEs including those whose frequency is well below the design basis
region. Even though the plant is capable of achieving safe shutdown independent of any
active forced circulation of helium, there are three independent and diverse systems for
heat removal via forced circulation of helium to gas to water heat exchangers. Hence the
existence of these forced cooling systems in the design provides margins by reducing the
frequency that the conduction cooldown capability will be needed.

In addition, the concept of safety margins is applied in the safety analyses to support the
licensing basis. In these analyses conservative estimates are used for the reliability of the
primary barrier that is achieved in the fuel particle manufacturing process. In addition,
the proposed PBMR licensing approach utilizes a comprehensive risk assessment, which
includes quantitative consideration of uncertainties to demonstrate that the TLRC are
met. This allows the examination of contributors to uncertainty and a quantitative
approach to the setting of specific safety margin in the development of regulatory design
criteria. In addition, the uncertainties are accounted for in the identification of licensing
basis events (LBE) and safety significant structures, systems and components. Hence
both the design and the safety analysis framework apply the principle of safety margins to
assure that safety requirements are met. Thus, the proposed PBMR licensing approach is
consistent with the risk-informed principle of safety margins.

6.2.4 Monitoring Performance of SSCs

The need to monitor SSCs to identify unexpected developments in performance and to
ensure that regulatory design requirements are being met is another important principle of
risk-informed regulation as noted in Regulatory Guide 1.174. The PBMR design
incorporates several different monitoring strategies to apply this principle. There is an
on-line system to monitor the circulating radioactivity and chemical purity of the primary
coolant to provide an immediate indication of unexpected adverse fuel performance
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and/or intrusion of impurities into the primary coolant. The on-line refueling system
continuously monitors fuel elements to ensure that safety margins on fuel burn-up are not
approached and provides an opportunity to identify damaged fuel elements. Temperature
and flow measurements throughout the primary cooling circuit and the various cooling
water circuits ensure that the reactor vessel and PPB components are operating within
temperature limits and that cooling water system integrity is being maintained. There is a
capability to defuel the reactor if needed to perform inspections and maintenance
activities at shutdown. In addition, radioactivity monitors in the containment and
management of helium inventories provide indications of any leakage from the primary
barrier. On balance, the use of monitoring strategies is consistent with the PBMR with
the selection of equipment for safety classification.

6.3 SPECIAL TREATMENT OF SAFETY-RELATED EQUIPMENT

Special treatment requirements have been developed and incorporated into NRC
regulations to assure reliability and effectiveness of safety-related SSCs during design
basis accidents. These requirements address quality assurance, maintenance, in-service
testing, in-service inspection, equipment qualification, and other treatments to assure
adequate reliability of SSCs during design basis accidents. More recently, the industry
and the NRC are working to incorporate risk-informed insights into attempts to
reformulate these special treatment requirements.

Beyond Reg. Guide 1.174, the NRC has risk-informed regulatory activities underway to
support changes to the special treatment rules in Part 50 to modify their scope to be risk-
informed (Option 2). These activities are consistent with the philosophy of Reg. Guide
1.174, but the specific applications are still evolving.

The Option 2 effort involves the categorization of SSCs into risk-informed safety
classifications. The process includes consideration of the existing safety classification
and plant-specific risk insights. The industry has been developing implementation
guidelines. These guidelines developed for existing LWR, rely upon the CDF and LERF
risk metrics, and account for the variety of the risk tools employed across the industry.
Consequently, the details of the categorization process are different than the proposed
PBMR licensing framework. However, the philosophy of the approach is similar in both
documents. In the PBMR rather than using CDF and LEREF, the frequencies and dose-
consequences of the Licensing Basis Events derived from the PRA are utilized.
Fundamentally, this is equivalent to the Option 2 concepts applied to relevant PBMR
event sequence classes.

Given the DBE, the PBMR approach to safety classification outlined in Section 6 follows
the conventional regulatory practice: a set of SSC are selected that are shown to be
sufficient in the event sequence analyses. Furthermore, since the SSC are explicitly
linked to the spectrum of DBE, all regulatory requirements including the so called special
treatment requirements are expected to be directly developed on a case-by-case basis. In
essence, risk-informing a deterministic licensing basis as in the Option 2 and 3 efforts for
LWR is not required for the PBMR as risk-informed principles will be used to derive the
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special treatment requirements within the initial license. Indeed, the risk-significance is
built-in with the probabilistic foundation of the PBMR DBE.

Rather than impose additional arbitrary, blanket special treatment requirements for all
safety-related SSC, and other artifacts of the pre-risk-informed licensing era, it is
proposed that an appropriate set of regulatory design requirements be developed for each
DBE on a case by case basis and that risk-informed special treatment then applied to the
corresponding SSCs.

Currently, it is not expected that there will be a need for special treatment for SSCs solely
for the purpose of preventing or mitigating EPBEs. For example, for the MHTGR, the
design functions that ensured that EPBEs remained within acceptable limits were the
same functions that were needed for the DBEs. Since an appropriate level of special
treatment is applied to the ensure the reliability and availability of these design functions
for purposes of protecting against DBEs, additional treatment ss not needed for these
functions with respect to EPBEs. A similar result is expected for the PBMR.

Additionally, it is expected that some non-safety-related SSCs will perform a defense-in-
depth function or provide safety margin. These SSCs will be evaluated on a case-by-case
basis to determine whether enhanced treatment (i.e., treatment in excess of normal
industrial practices) is warranted. In some cases such as fire protection systems and
radwaste systems, some enhanced treatment may be warranted. For active systems that
are normally operating, no additional treatment may be warranted.
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7 CONCLUSIONS

The development of the PBMR licensing approach is fully consistent with the NRC’s
regulations and Policy on Advanced Reactors. The early agreement on the processes and
tools that are described in this paper is important to the development of a more certain
and stable regulatory environment within which the PBMR design and application can
mature. Equally important, the development of the regulatory set needed will identify
work needed by the NRC to expand, modify or develop regulatory guidance that
currently does not exist for gas-cooled reactors like the PBMR. Finally, the complete
implementation of these processes will provide a firm foundation for the NRC staff to
prepare for and conduct an efficient and effective review of the PBMR application.
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